\$1.00 per copy
Support your computerplease join our club.

OCTOBER 1985
Vol 3, No. 7

T/V Conversion WarningComputers in England 4Bold Print 5
Rotating Characters 6
M/C Class 6
Choo Choo 7

October Meeting

At 11:00, Tom Bent's hardware workshop. Got loading problems? At 2:00, Bill Russel will be coming down (85\% chance) and demonstrating his color from a B/W TV program.

Printing VU-CALC 8
Mandelbrot Set 11
Spectrum Tape Copy 12
Machine Code Bits 12
Real Applications 13
Roundup
14

FRESIDENT $=$ MESQAGE

Ne vee tal tham month NO NEEE TO Dur afforts to stimulate more active bertazioetuon an club programs was handsomely met by Uic Fresident Tam EENT" s imitiative to organaze and lead \equiv Hardware Wreschot. Lest Eeturdey mornamg before the Genergl Membersh:a Meeting. from 11 an to z am, some 22 members who had signed up, $\$ 21$ chems: ir hand. zpeared at the library, smoking solder irons waving, Dumming roein wafting. prom burner working - as oliger cartridge Eoarce were beang preparec to recerve Eincian geectrun emulator chips.

The session can only be ailied an unduaitfod sucese as all boards checkey out ok. even though some of us needed muen help te clean up rather messy soldering jebs. In this. Tom hed hele from good natured folks 1ike Etan Guttemberg. Tony Erocks and otmers.

Eeing a spreadeheet jumky, I borrowed Tom" \equiv "Omnacalc 2" grogram so 1 could out my new emulatar to worl 1 mmedzately. It Ioaded nicely,
once I found but from a bhone sell to Tom. that f fyrst had to tyoe in the command "OUT 244, z" to pet the hew board working. The screen format looked very familiar indeed. and when I opened the Documentetion to see the commancs. it was immediateiy elear that Omnicale-2 was good old Memocalc with some ennancements. But WHAT enhancements! Not all. but most. of my wishiast for an upgraded Memocela have been orgvided in Onmagerc-z. a think.

Let me make one thing perfectly Clear - Omnicelc is not just LIKE Memocalc. It IS Memocalc. with eleven enhencements. When I have more time to work with the program, I will write areview of it for the next issue of the Newsletter.

While shopping at Montgomery Mall after the General Meeting, I found a book in Walden Eookshop called "Euild your own Expert Systen" by Chris Naylor. Since one of my interests is Artificial
Intelligence, and Expert Systems are one type of program that comes within that rubric. I bought it. I found that it includes three programs demonstrating Empert

Svstems and written in BASIC for the Apple II AND for the Spectrum. Dnce I have keved in the programs and used them a while, I will write e review. It may be a while though. as one program is five pages iong.

This then is the sage ot one member" s introduction te the Enclish Sinclazu Spectrum. I suspeet othera wili have siniar upbeat kinds of Experiance - upbeat because in effect we now have new machines: the Soevtrum. whiet is ver' muct alive and for whith there are hundreds of programs and new ones beang created in England all the time.

Next month the Harduare worbshoo wil Have sessions building examasion boardy and the Fsedz geriel port. with which we aan then Lese the ineroensive modoms now aveinabie. These will open new vistas again fom the 206e in an affordabie manner. A namber have signed up already, so it 1 octs 1ike a future Metwor: a三 in the making. With a telephone conterence Eaily maybe we can eventualiv hold Genersi meetings in sur own homes. bsing the comouter networi. And Jim Mackenzie Ean downlaad has EATS library of programm ty onome (or is it upload?

In any Evert. $t \pm 2=-1$ aar that much new use and furi is avai able to the 2068 bwners. And with Tom woods new Newsletter cedicuted to the Memotext and Memocale ercorams for the $7 / 5$ loge upgrades of those prograns will give that machine mew usefulness and a longer life. No womaer that sum memtermmid is at a new high and growing everv month. And just to think thet some among us thought our grour would Meve died on the vine morths age! Happy computing: Johm Comger

EDITOR'S COLUMN

Not long this time - no room! Coming next month (perhaps): Reviews/ information on OMNI-CALC, DEVPAC, the Larken disc I/F, speech synthesis software, and more. WRITE!

```
2710 fiacomb st.,Nw.N.
Washington, D.C. 2OGOG
```

The Editor
GATS Newsletter

Dear sir,
Y am sorry to write that the TV-tomonitor conversion by John Monkus, reprinted in the September issue of CATS newsletter, is very dangerous and should not be attempted.
Unfortunately, the conversion will actually work and yet be capable of delivering a lethal shock to the operator, never mind what $-a n$ happen to the computer.

For the technically interested, I proffer a brief explanation. Capacitive isolation works and is safe so long as the capacitor e are 50 small as not to be able to deliver a lethal shock, and so long as they have an adequate voltage rating. A rating of 400 volts would be safe, at least for the capacitor. The large capacitors used in the article would of course be polarized, which is not safe either. Fieverse-poling such a capacitor causes it to fail to a short circuit.

The reason that the conversion will work is that the TS-2068 is isolated from the line by its own transformer, and can be floated at amy potential up to the limits imposed by insulation breakdown in the 2068 power transformer. The danger occurs when the TV chassis is "hot", ie. connected to the ungrounded side of the ac line. The reactance of the capacitor is such that the 2068 now is also live. If now someone touches any ground connection to the 2088 and a true ground, current will flow through the capacitor and the operator, reverse current (or overvoltage) will instantly short the capacitor and do the operator no good at all.

Library Notes 000

On Saturday morning, August 10, the Library sponsored a hands-on computer awareness workshop for local children, aged 10 to 13. Eight members of the Capital Area Timex Sinclair compuler group (CATS) set up eleven terminals in the second floor meeting room of the Municipal Building. Charles Dickson, a systems analyst at the U.S. Department of Agriculture, led

Kids \& Computers A Fun Combination!

the two and a half hour session by first ${ }^{-}$ introducing 'group members to the seventeen children present, then intraducing the computers and their capabilities to the participants. Takoma Park resident, Mark Fisher, a CATS member, explained the parts of a computer, how its memory works, and how to draw pictures. After a "lemonade break," Mr. Dickson taught the group how to write a program for "makeing a peanut butter and jelly sandwhich." Pretending to be a computer, to him. A graphic lesson in the problems of giving imprecise instructions to a computer was learned by all when the sandwich produced had peanut butter spread on all sides of the bread, and the jelly side of the sandwich placed face down on the table. Amid much laughter, the lesson learned was that computers are not very smart, and will do exactly what you tell them to, regardless of the outcome. As the workshop concluded, parents arrived to find CATS members and children eagerly playing computer games and displaying their computer skills to each other. All of us involved in Saturday's workshop tru;y appreciated the time, terminals, and relaxed expertise freely given by the CATS group to the children of the Takoma Park area.

- Andrea Cincotta,

Assistant Library Director

THE COHFUTER MARKET IH EHGLAMD
This surimer I spent three wevs in Eurofe, two of them in England. While i in England I took the ofportunits to purchase some Spectrum sotware and harduare and look at the home computer market in Eritair. I do not intend to delwe in detail into the mine Froblems of the Simelar empire. Mans of sou will have read of the intenced taveoper of Sinclair Fesearch ba newsfafer oumer Fobert Maxuell. A taloover that fell through when Mr Maxuell found out how big the problems were in Sinclair Research and in his omin newsfaper grifire. tow it sems that sir elipe has been bailed out be 'Qimons' a big Unk chain of photorelectronic stores who have bought up all of Sinclar's unsold stock.
Host home computers in Eritain are sold through a feo large chain stores. notably Eoots. H.H.Gmiths. Greens, and Dixons. There are also some pracialist computers shops -but I did not eeg mane outside London. Most of my shoping was done in medium to large provincial 'toums so it should be faimly tapical of that found by the average Eritish shopfer.

On the basis of what I saw simplar computers are by for the most fopular. All stomes boasting ans sort of computer department carry Spectums and usualls oL"s. In fact ol's were eass to obtain for as little as exag but don't. rush to bus one set, there will be 3. BIG Frice reduction soon.? However the lame number of QL's sems to indicate substantial unsold stork of QL's rather than any fopularity of the gl.
Eased on what I san the Frwetrad CPC464 and EE4 are second to the spectrum. The fmetrad e-bit E4k machines were lanched last Christmas in Eritain and have Froved very Fofular" fll the remainime hone computers offered in Eritain seemed to be way behind these two. I was in Eritain for a fen days last December and I noticed that since then computers made bs Atari, Comindore and the Japanese MSK marhines aro much
less in evidencen Software for the Comimore EE4 is supposed to be secont only to the spectrum in sales but this must be based on past Ce4 sales. It is mot ease to foind a Ced in mans areas because some stores are refusing to stock the Cet. This is aprarentis because of an erratir pricing Folics be Commore who have been dumping some machines in Eritain at low frices. The onts other computer in evidence was the EEC model E which is catering for the top end of the Eritish home computer market.

It is nou fossible to find defunct machines like the DeIC and DRHGON gathering dust in some shops and being satd at big diecounts. Tefical frices for surn obsolete machines are 59 or les. How that the spectruit has reflaced the 16k and 48k Spectrums these latter mathines can also be bought at lou frices. I sau a 16 k Spectrum for $\mathbf{2 9 . 9 5}$ in W. Wo Grithe in Haterlog station in London.
If you are looking for spectrum software in British stores you will froblably at first be delighted to see lots of spectrum softhare at low prices. Then gou mas be dieapointed when camot find ans item on suur list. Easically two kinds of softure are ususlly avilate the wry latest top ten most popular ganes and "old" software from last sear or before. Bat the time he har about gectrum sattware in the U.G.A its out of the top ten but not pet on the discount sheles.

I found the best ranes of spectrum software was not in ans computer shaf but in H. $\mathrm{H}_{\mathrm{H}} \mathrm{H}$ record stores which can be found all ger Eritainn Hewertheless I had a good time bing same low price softwre at ex of less since there is a laree selection of qualits items at these prices. There has definitels been a downiand trend in the frice of men software since last year. There is now wers little software introduced at ower fill the das when a gane like the Hobbit could be sold for fis have gone. There is also a trend towards new software at burdeet

Prices fror Example Eritish Telecom has introduced a mange of software at +2.5 each.

- Howerer some U. 5 dealers mou sem to be taking adrantage of low price spetrmat sutware. Ino recently seen Traxe ofterred for制. 95 det this game can hou be otatard in England for less than Et inmluding tax! Ot course if su! have to ge to England to get the low Frice then you might monsider the Uns. Frire peasonatis.
If sou want ansthine other than a basic comfuter and some softome in Eritain sou could be ir for a Lone seamer. The onla Spectrum har"dure add ons wasily awailable are josticke and josetiok interfaces. Wext most emmon were piorodriwe expaneionkita. Eesond those items ite like searching for hens teeth. The onls Spectrum harduare add-ons eazily awailable are iosstick interfaces Hext most Common were microdriwe Expansion fits Flus an oraisiona offering of Extra microdmiue units. I found (and purmased y light Fen in a computer shop in Chester. In Eambidee I found the only store 1 :an otfering dise drives © The Grus Disoutery 1 yand thes had unst ane unit in stome In sems iust as eass to orom spertrum harduge by mail direet from England mo prom a Aroritan Tre EuFFliter eprowiding thes do not mark up the Frict too much rather than wase too mumh time searenime Eritish Etores. It mas be that gome rentral London computer shofs Earrs better hardore streks. houever I did mot see much evidence of this when I uss in London last Demember.

The home computer market in Eritain is almost totalls games miented and most British computer magaines serf aimed at games Plasers under 20 Hevertheless this has lead to a hian rate of Comfuter ounershif consideratly hianer than in the Uns. $\mathrm{A}_{\text {a }}$ and second onls to Japan. There is no doubt that the martet is shoung down and gross ouscetocking of hardware and sottware has. and is. leading to the domitall of countless softure houses:
computer distributores and to sir Eliwes eurrent problems. The future of Sinclair is difficult to predict. The GFertrum Ean't last forever and its doubtful if ewen a lou price ol will ever be as big a surces. Meanohile Uncle Cliwes edes secm as ewer, fixed on far distant horizons.

TOHY BFOOKS

BOLD PRINT

This program provides a heavier version of each item of the character set. They are stored in. RaM at 64512 and may be used as needed with input from tape, memory or keyboard.

The onty instructions are in line 9995. After running, the progran may be deleted and the bold print will remain in memory white other prograns are loaded or cleared. The type for a particular use wiy be selected manually or, if it is to be switched within a run, the order may be inserted within the prograin.

The mnemonics for the machine code in lines 996e-997e are:

SOURCE	LD HL, 15616
EMP	LD EC, 16383
DEST	LD DE, 64512
Trams	LD A, (HL)
	58 L A
	OR (th)
	LD (DE), A
	5BC \% ${ }^{\text {\% }}$, BC
	REI z
	INC HE
	INC DRE

9918 CLEAR 64511	
9925	LET $\mathrm{H}=653{ }^{\text {c }}$
9938 READ MC: IF MC=999 THEN	
9940 POK	
9958 LEI $\mathrm{N}=3+1$	
9968	956 DFH 33,$6 ; 61,1,255 ; 63,17$
${ }^{5}$	DFITP 2
243,999	
9999 POKE 23607, $251:$ LI5T 9995	
9995 REM fixixifixixix SElECT TYPE	
,	

H.E.LEPPLER

ROTRTIMG THE CHPRPCTERS
Have you ever wished to print a cuybard character at rightangtes or even uFside-down? It can be useful when labeling cuis Yes or other graphics, belt if ${ }^{\prime}{ }^{3}$ tedious to enter liser Defined Graphics manuatimy bil by bil =

The progran ROTATE CHARS ai it rotate a chybard character of symbol by 90 , 188 or 27 , degrees and store it in the bDe metory

The first entry is the amount 0 of rotation. Fothowing that 3 series of characters nay be rotated and stored in any chosen lug location. To go io another rotation. replig to the chimp Prompt with $X X$. To quis, ansurer the ROTPTE prompt with 定

The selected toe tocations will be iisted on the screen and the rotated Characters will ka displayed, pixel by Fixely as formed. The list man be copyod for use as an indix a The rotated Characters are accessed in ihe HSuat eway fof UDE's.

Once characters are entered. MEU a may be entered to dump the program. The characters will renain in ubg momory and the desired program maiz be loaded or comeands entered.

MACHINE CODE CLASSES FLAN FALL STARTUF

Intermediate machine code $=1 a s=5$ wid be held the THIFD and FOUFTH Seturdzvs, from 20m to Epm, Scpt. oct. and Nov.

Flace: my holse - at 4814 EFANTHAM AVE, Chevy Chase, ME. This isin Somerget Villege which is between Wisemmsin ame Fiaver Foad itst nowth of Friendship Heights. Sest te sme a street man of the area or wall me: 654-5751.
 sprimg and summer and covered the fumdensntals. using as the text Zaks" "Frogtammine the zeo". The Intermediate group wil momtinue study of the 28 m instruction set in more detail. since that is the wors of the subject. but will alse start study of the FOM and its三ubroutimes usimg Devid wood $=$ book: "The Frawtieal Euide to Mawhine Language Frogramming on the
Times/Sinclair" This is an
interesting and useful book on our mechines whether you plan to leam machime code or not. I strongly recommend it as a bart of vour computer library.

While I am listing computer books. those of you most interested in the 2068 should know about the "Timex Sinclair 2068 Intermediate/Advanced Guide" by Jeff Marbir, published by SAMS. and whath is combletely written as a machime edde handbook: for the 206e. I plam to use parts of it in our clesses.

AIse Joseph Carr. who wrote the "Z80 Users Manual", wrote an adaptation of the Mamual for Times machines. both the 1000 and 2068 . Foughly Melf the bout is on interfacing. As such, it should be helpful to the Haraware workshop group. This book is titled: "T/S Machine Language Frogramming and Intertiscirg".
continued on 7

56 B 7 Ravenel Lane springfield, UA 2e151
September 16, 1965

Mr. Mark Fisher
To0 Erie मuerue
Takoma Park: MD 20g1E

Dear Hark
unst a mote in response to your request et the meeting on saturday regarding the harduare session that morning.

I found it to be an enjoyable and educational experience.

The onty suggestion I have mey not be apflicable just to the harduare $s e s s i o n s, ~ b u t$ also to meetimgs as well. It was voiced by someone during the meeting: It is this: USE terms Euch Es AROS EXROM LROS, EtC: ES Eparingly as possible Bome of us most of ust have heard these terme but havent really been stes to identify uith them Elearly I Knou for a fact that ETMARY is what bsed to happen to the vacuum tube in a class A amplipier when it began to drau grid current.

Don t despair = We il ell come Eround sooner ar bater.

P. B. Tasuord II Eet for Be cot. uidth for T/S-2040 Frinter.

CRYPTOGRAM Solution:

ИЭЭWOJJAH YMMUY A OT TИЗW TこlJAIJ39Z XJAg A

TERFY HARDENBEREH
LT CDR USN (RET)
$14 B 0 \quad 5$ MARENGO AUE
FAEADENA CA 91106
(818) 799-2933
C.H.T.S.

POE 725
Blactensburg, ho E0710
fll my gramichilden have leved this littie program. They learn letters, lagh at the little Engi we chugging audie and prout each other when an error erases part of the train.

26 fucust 1905

continued from 6

Mark Fisher has offered to help teach the intermediate group this fall when possible. Thank goodness! I was really getting over my head - almost. Brian Littles an electrical engineer who studied computers at Fgenn Statey has offered to talk to us on computer logic. which is more than just AND. OF and NOT. The subject. while getting more complex is also getting more interesting. I personally am, learnang a lot about how the machine works and why whict is reason enough to learn machine code.

Anvone who wants to start from seratch ean give me a call and I will set up a mutually agreeable time to meet at mv house. Since I have gone thru the fundamentals end have them orettv well in mind. it willnot be necessary to have a Iarge group of beginners to make it worth the time it will now take. So those who missed out on the first group - sign up now. Call me at 654-5751. JOHN CONGER

1 REM

TERCHES LETTEF RECOGNITION RND REWARDS CORREGT IDENTIFICRTION

E PRINT AT 20. "THIS IS THE FUN ENGINE THRT RUNSUHEN YOU FFE SS THE RIGHT LETTER.

PRINTINGVU-CALCON AN BO COLUMN PRINTER For both the $1000 \& 2068$

VU-CALC is an important part of the armory of software for the Timex owner. Unfortunately, the VJ-CALC owner is restricted to printing one screenful at a time.
" 80 column" printers offer the potential to print far more than the Timex's 32 columns; in fact, they often offer a 132 column mode. Taking advantage of these printers requires understanding of the forms in which the spreadsheet is stored, and special programming to get the data out.

The programs below are designed to allow the user to print out any desired section of VU-CALC's spreadsheet, while retaining the coordinate references. There is NO error trapping, and it is up to the user to ensure that his desired section of spreadsheet will fit on the printer, Good luck!

The $1000 \mathrm{VU}-\mathrm{CALC}$
The 1000 does not easily handle unassigned data. Instead, the 1000 puts the spreadsheet into a one dimensional string, B\$. The essence of a -spreadsheet is in its arrangement as an array in two dimensions, and B is chopped up in a regular way to yield those dimensions. B is divided into two parts: $\mathrm{B} \$(1 \mathrm{TO} 8424)$ holds the contents of the 936 cells with nine bytes per cell, and $\mathrm{B} \$(8425$ TO 9824) holds the formulas, at 35 bytes per formula.

The array data is arranged in. the following manner. B\$(1 TO 9) holds the contents of cell A1. The first byte holds the reference number to any associated formula. This number can be set to a specific formula number " n " (for $n=0$ to 40) by LET $\mathrm{B} \$(1)=$ CHR $\$ \mathrm{n}$. The next eight bytes, $\mathrm{B} \$(2 \mathrm{TO} 9)$, hold the datum you see on the screen in cell A1. The following nine bytes hold the next cell's information--but this cell is Bi^{2}, the cell below A1. The first column of cells are stored in order, then the next, and so forth, for 36 columns.

Formulas are held one after the next in the second part of $\mathbf{8} \$$. Each formula is allowed 32 bytes, followed by three bytes of CHR $\$ 255$ as a divider. Absolute formulas are easy to read, but relative formulas yield only garbage on casual inspection.

To look at a particular cell, we will have to resort to some simple algebra. If we had an array of boxes, numbered like this:

147
258
369
and we wanted to reach a particular box, given its
row and column number, we could use this formula:

$$
\text { cell\# }=(\text { column }-1) * 3+\text { row }
$$

In the case of VU-CALC 1000, the array is 36 wide and 26 tall, and the corresponding formula is:

$$
\text { cell } \#=(\text { column }-1) * 26+\text { row }
$$

To account for the fact that each cell occupies nine bytes, the formula becomes:

$$
\text { celli\# }=(\text { column }-1) * 26 * 9+(\text { row }-1) * 9
$$

This program returns cell\# 0 for row 1, column 1; we need to add a constant of two to move our focus to cell\# 2. We might as well combine the 26 and 9 , as well:

$$
\text { cell\# }=(\text { column }-1) * 234+(\text { row }-1) * 9+2
$$

New program lines can be added to use the above formula and string slicing to rearrange the elements of B into the tabular form the reader expects.

And One Little Catch．．．．
Well，two．A）There is no extra room to add progamming lines to the 16 K machine．B）If you have a larger memory，VU－CALC will crash if the BASIC code changes length by one byte．

Solutions：

A）Either get additional memory，or delete enough BASIC to make room for the new code．A quick way to make room is to SAVE VU－CALC，then delete the m / c lines，and type the printer driving code in．

B．1）If you delete the m / c as in A ），you need not fear crashing the program，since it is crippled anyway．As you will have to type in the driver code each time you want to LPRINT an updated spreadsheet， you will probably leave out the＂user friendly＂ lines．That would mean typing in only 9690，and 9710 through 60：and using immediate commands to set up the variables．It will still be faster than pasting all those little bits of thermal paper toge ther．

B．2）If you have more than 16K RAM，you may either：add this code before you set up the spreadsheet；or use one of the transfer utilities （such as FASTLOAD or 2XLR－8）to move Bs to a safe cassette while you add the driver code．You can make it operate as a unified part of the program by changing the COPY in line 5030 to GOSUB 9500，and adding a RETURN line at the end．If you then use the ＂START VU－CALC＂option，the m / c will know where the array is held，and you can reload your spreadsheet．

VU－CALC ON THE 2068

The 2068 has the ability to easily load information above RAMTOP，and VU－CALC puts both the m / c and the data there．The array is also ordered differently；in horizontal ranks，with cell\＃A2 following A1 in memory．

Putting the data above RAMTOP means that we can＇t easily use string slicing to LPRINT the results．The net result is more detail programming to get the same output．On the other hand，VU－CALC on the 2068 has better than 1500 bytes of BASIC program space available，and the 80 column routine is easily integrated into the program by changing the first statement in line 2000 from COPY to GOSUB 9600 ．The 80 column routine will work，too－－there＇s plenty of room for a printer driver above the spreadsheet．

Doing the job

The spreadsheet is held as DATA at 34553 ，with a length of 20277 bytes．The first 20 bytes are some kind of system variables；thus the array starts at 34573．The array consists of 50 rows of 350 bytes each．The remaining 2758 bytes hold the formulas，in an unknown form（anyone want to do an article？）．

To start on a given row，then，the row count is multiplied by 350 ，in the same way the column count was multiplied by 234 on the 1000．To start on a given column，that base value derived from the row count is added to the column count times the seven bytes per cell．

The complexities mainily came from trying to count using the alphabet as base 26 ．My answers to these problems，in lines 9650，9670，and 9765 aren＇t elegant，but they＇re workable kludges．Other oddball lines include 9790，where I＇m reducing the PEEKed address modulo 7 to provide spaces between the columns，and the various lines that use to to provide regular spacing；TAB sometimes doesn＇t work with 80 column printers．

```
9600)POKE 23658,8:CLS :PRINT"n
80 Col. Printer Driver"
9610 INPUT "Start col: "sc
9620 PRINT Starting Col. = ";sc
9630 INPUT End col: "ec
9640 PRINT "Ending Col. = nec
9650 LET \(s=0:\) INPUT "Start row:
```



```
26* (LEN si=2) )
9660 PRINT "Starting Row \(=\); s \(\$\)
9670 LET e=0: INPUT "End row: ";
e予: LET e=CODE e事(LEN e真) \(-64+\) (26
```



```
9680 PRINT Ending Row \(=\) " \(\ddagger\) :
    POKE 23658,0
9690 REM ** Set up printer **
9700 REM Col headings
9710 LPRINT" ": DIM t
FOR \(x=s c\) TO ec
9720 LET ti \(=\) " \(\quad\) +STR韦 x: LPRIN
Tt事;
9730 NEXT \(x:\) DIM t \(\$(3)\)
9740 LPRINT
9750 LET base \(=34573+(s-1) * 350\)
9760 FOR r=base T0 base+(e-s)*35
0 STEP 350
9765 LET t 丰=s事: LPRINT t 牛;: LET
S事(LEN S事)=CHR事 (CODE S事(LEN S丰)
+1): IF CODE S \(\$=\)
```



```
9770 FOR \(x=(5 c-1) * 7+r\) TO (ec-sct
1) \(* 7+r\)
9780 LPRINT CHR \({ }^{\circ}\) PEEK \(\times\);
9790 IF \((x-34572) / 7=1 N T\) ( \((x-345)\)
2)/7) THEN LPRINT "
9800 NEXT \(\times\)
9810 LPRINT
9820 NEXT \(r\)
9830 RETURN
```

continued from 9
(An alternate method for doing the whole job would be to SAVE off the array, and LOAD the code into a dimensioned A (20277), using:

LOAD " CODE (PEEK 23627+256* PEEK 23628+6)
Then use string slicing as before to print out the results.)

Using the program (1000 or 2068)
There is one line that I haven't specified. That is the line that contains the specific commands to prepare your printer to print the spreadsheet. I use compressed mode, and emphasized.

The "minimum version" (1000 only)
If you are planning to type in the minimum program when you need it, you will have to set up the parameters (sc, ec, s\$, e\$) in immediate commands, then use goto 9500 to start the routine. As with the "full version", calling for too many columns wont destroy any thing. If you are planning to continue calculations at the same session, don't forget to remove the routine completely, or the program will crash when you attempt to "CONTINUE VU-CALC"

The "full version"
Once the patch has been added, and you are working on a spreadsheet, just use the "print" command from within the spreadsheet. When the full version is called, prompts will appear on the screen, asking for the limits of the spreadsheet that you want printed. It is up to to you to choose limits that will fit on the printer - though nothing serious will happen if you're too wide. The RETURN at the end should return you to the section of the sheet you were working on.

May your exploration of the data be fruitful!

MF

Unclassified

Our astronomy club is looking for a good used T/S 1000 and 32 column printer as a donation or low cost. We will pay shipping and insurance. Also want lists of software and contact with someone who has expanded their T/S with more memory and big keyboard etc. Jim Hale, HCR 65, Box 261B, Kingston, Arkansas 72742
FOR SALE: Complete 2068 system: 2068/w ROMswitch 2040 printer, Sanyo 9 " monitor, GE comp. \& Panasonic recorder, joystick, 12 blank tapes, major hardware ; Vu-calc, Vu-3D, Chess, Penetrator, Zeus assem., Zeal dissem., Hot-Z, Manic Miner, Pinball, BASIC compiler, Toolkit, War in the east, FIF-Forth 2068, Technical manual \& misc documentation. All as a unit for $\$ 200.00$. Olasky, 588-0537, Eves.

CRYPTOGRAM:

D CDKH MASKEDXEMY SLY YT D GRIIG

PDXXTOSSL ADNYG UNSMMSU DM D

KTIARYSN. OPSL PS YNESU YT CNSDH

UDLKS, PS MXEAASU D UEMH.

G. White answer on $P, 7$
 COMPUTER RECREATIONS

By A. K. Dewdney

Excerpted from: August 1985
Scientific American
The Mandelbrot set broods in silent complexity at the center of a vast two-dimensional sheet of numbers called the complex plane. When a certain operation is applied repeatedly to the numbers, the ones outside the set flee away to infinity. The numbers inside remain to drift or dance about. Close to the boundary minutely choreographed wanderings mark the onset of the instability. Here is an infinite regress of detail that astonishes us with its variety, its complexity and its strange beauty.

The set is named for Benoit B. Mandelbrot, a research fellow at the IBM Thomas J. Watson Research Center in Yorktown Heights, NY. From his work with geometric forms Mandelbrot has developed the field he calls fractal geometry, the mathematical study of forms having a fractional dimension. In particular, the boundary of the Mandelbrot set is a fractal, but it is also much more.

With the aid of a relatively simple program a computer can be converted into a kind of microscope for viewing the boundary of the Mandelbrot set. In principle one can zoom in for a closer look at any part of the set at any magnification. From a distant vantage the set resembles a squat, wartcovered figure eight lying on its side. Approaching the set one finds that each wart is a tiny figure shaped much like the parent set, however the magnified version is not quite the same set. As the zoom continues, each wart seems to reappear, but a closer look always turns up diffehence. Things go on this way forever, infinitely various and frighteningly lovely.

Road Schrack has taken this idea and applied it to the 2068. His efforts follow.

THE MPNDELBROT SET

The August issue of the Scientific American has on its cover a computer－generated dis－ play．I tried the scheme on my EDEB．The rescution is much poorer，but the results are quite fascinating：The Program shous hou I set up the jlgorithma thot having a color monitor，I plotied shades of gray that are obtained by the use of user－defined gra－ phics．The sutroutine starting at ine ebo is run once at foe beginning to set up the graphics．

The shades of gray obtained for different watues are shoun heres The algorithm euabuates the expres
$0 \quad$ 引inn zuz＋

 and $=$ are fompler num－ bers－If the size： of z is iess than then the procedure is iterated．Fiter lan iterations z is said to conuerge io it Size is still ce E， an iveration，ne uhith then the yatue or n is used to Choose a tevel or grayg the sma－ her the value 0 i \quad the the lighter the shade of gray．Line lum shous that unite is ehosen for пरह日，If you have a coigr moni－ tor you can eiminate the subrou－ tine stating at line edu and change in ine if 4 toPRINT INK E；BT x ，\because＂
The program creates a display by testing for convergence for a aifferent yabu of cat each三treer lorations A starting uabue of the reat amd imaginary parts of of rez and ite i三 enter－ Ed on ines ED and gh．For eath screen position the ublues of rc and ic are incremented on binm Es 46 and 4o．The size of the intrement determines the detait in the image：I have efosen to couer the fange that adds and to the starting ualues in gener－ ating my image：You can try more or iess．I haus chosen rcz＝EE and irz＝0 まs my starting values You shoult read the original ort ifle to get idegs for different starting walues．

You can get a factor of B improuement in the resolution Ly using the FLOT function． This should be tried onty if you have a cotor manitof and you haue iots of time It takes about ehours io generate one of the images uith the present resolution of 20 x 30,50 it mould take bout Brimage icu x 240.

A．A．Schisck

COMPLEX WHABER5 are art are of
mathematitcs that has uide
appilcation iñ physics and in Etectrical engineering＝The complex number z has tuo comp－
onents catled the real and imag－
inary partsy $Z=r z+i$ i iz
where $i=\sqrt{-1}$ ．The rulei for iddi－
tionceptois rematrband it＝iatib．The sule por multipio 5ation $c=H$ \％is
 Thus bines 70 and Bh atove cat－ culate the reai and imaginary parts of $Z=\underset{\sim}{x} \boldsymbol{Z}+\boldsymbol{R}$

August '85
By John Bloxham
This is probably the shortest m / c program you will ever see, but it does a big job. The program will help you to make a back up copy of any program of any length. You need two cassette machines, on to load the program in via the ear socket, and one to record the new copy via the ear socket. The program simply outputs to the mic socket whatever comes in the ear side. It does produce better results than simply connecting two recorders together, anyway - try it and see.

> 1 REM Tape to tape copier
> 10 FOR n=USR "a "To USR "a"+8
> 20 READ c: POKE n, c: NEXT n
> 30 DATA 243, $14,254,237$, 120, 237, 121, 24, 250
> 40 RANDOMIZE USR USR "a"

The program is relocatable but for convenienceitis loaded into the UDG area. Note that the color of the border will not change, and you will have to pull the plug to get out of the program when you are through recording.

EDITORS NOTE!

I've tried this machine on two different Spectrum emulators, and haven't been able to get it to work. I'm printing it to solicit some member's development, as it would be a very useful program if it could be debugged. MF

MACHINE CODE BITS

Brian Little has written the following machine code bits for the T/S 1000. As you write your programs, these bits can help you get results from the 1000 .

There will be more next month.
INKEY禹 (22 bytes)

CALL 02BB
70
ADD A,2
JR C 09
LD Bi
4D
CALL $07 B D$
0600
LD By
LD C, (HL)
RET C
$010000 \quad$ LD BC, 0000
C.

LD BC, rm cl
RET

REAL APPLICATIONS

The Problem:
Starkville, MS
February 5, 1985

Dear Sir:

I am currently working on a data aquisition system for my senior design project using the T/S 1500. Adequate information on this computer has been difficult to obtain or understand, since I have only recently begun to use the T/S for purposes other than simple BASIC programming. The following are areas in which any assistance you would offer would be appreciated.

It would be very convenient if the data collected could be (1) transferred to cassette tape in the field, brought in to be transferred to an IBM PC, and then to the mainframe; or, (2) bring in the T/S every month or so, load the tapes with data into the T/S memory, then into the IBM. I am thinking of using the AERCO RS232 I/F to go with option (2).

Other problems I have encountered are lack of cassette control by the program, lack of an internal clock, lack of a printer, and a need for documentation on the manipulation of locations that can be POKEd. However, low cost, size, programming features, and low power consumption of the computer favor its use in some field applications.

In this project, it was intended to be used to collect information about water flow levels using a rechargable battery for power.

A potentiometer will begeared into a float that measures water level through a flume. The pot reading is converted into a digital signal by an (8+8)*8 analog interface. The digital reading ranges from 0 to 255.

The program reads the measurement at regular intervals. Since it is best tokeep the field equipment to a minimum due to power requirements, a monitor and printer will not be used in the field. INGE Y will be used to control the operation of the program; stop the run, save the data to tape, and resume operation of the program.

Since we have only one T/S available, it would be convenient to store the data on tape to be read into the IBM directly, through its cassette port. If necessary, the data may be uploaded by the T/S and its RS232 by bringing in the computer on off days.

Any suggestions would be useful. Thank you for you time!
Sincerely,

more diversified in function than some systems that are specific to their task．The power outlet，recorder，and printiar are all directed by the computer．

The power outlet is a controlled power source by which the recorder and printer are controlled．Since the computer was not equipped with a function to shut the recorder and printer off and
 recorder and printer may be turned on or off as needed．Thus，
 power when the syetem is in the field being powered by a DC power ＂as．anos

The DC power source is regulated to provide power to the
 supply．However，the printer requires an AC supply．Therefore， the $12 \mathrm{~V} D C$ is converted to $117 \mathrm{~V} A C$ by a power inverter．The power inverter supplies the contralled outlet for the printer．
 power，the recorder and computer being directly powered by the DC ：ロコーMos

The printer serves as a monitor of the internal actions of
 addition to the recorder．Thie meane of monitoring provides a

 primary meane of data storage and serves as a backup copy to data transferred to other computers．

The data transfor is accomplished by means of a telephone modem．The modem allow data and programe to be transferrad from
 computer has at its dispowal any computer farillities available to

ti vo panutquos 7
And The Solution：
August 21，1985

 form，store the data，and transfer the data to other computers for analysis．Benafits of the syetem include the saving of time and money，as compared to previous means of data aquisition and handing，as well as diversity in application．ro achieve these goals，a symtem was developed that was built around a rimex－ Sinclair 1500 computer．

First，an analog，to digital converter board was used to convert the analogelectrical stimulus to a digital form that could be interpreted by the computer．Inputs to the board are received in the form of valtages from 0 to 2.55 volte through an eight channel input bus．The eight channels allow data to be collected almost simultaneously from several inputs so that one input might be better correlated to the others．Outputs are received by the computer in the form of a number between 0 and呙

The computer then may either record the input number as is or convert the number to the zorresponding physical measurement before recording it in memory．The computer serves aw a mans of data reception and manipulation，data storage，and overall eyetfm control．gince it is programable in BASIC，it is easier for permonnel to operate the syetem versus programing an alternative control unit wuch as a microprocmasor．Baing programmable，it is
continued from 13 features a RS232C communication device that can us win modification of the modem hardware. Further, the modem provides additional possibilities for using the system in remote locations with less hardware. By telephone communication, data could be instantly transferred and monitored by other computer facilities eliminating the need for an in field $A C$ power inverter, cassette recorder, printer, controlled outlet, and a large computer memory. Operation of the system consists of first connecting the power supply. For a $12 \mathrm{~V} D \mathrm{DC}$ supply, connect the source to the power inverter. Then, the controlled outlet is connected to the power inverter. Switch the power switch of the power inverter ori. The power switch of the controlled outlet is then switched to the DC option. Cables from the recorder and computer DC power outlets are then connected to the controlled outlet box as labeled. The printer transformer is plugged into the labeled 117 V outlet and connected to the printer power outlet.
 followed. The controlled outlet is connected to the 115 V source. The power switch is flipped to the AC option. The recorder, computer, and printer are connected to the controlled outlet as labeled. The computer is not turned on of off by a switch, but is powered as soon as the pluq from the power source is inserted is powered as soon aw the pluq from the power source is inserted
in the power jack.

Next, it is necessary to load the program from cassette to computer. First type POKE 36867,255 . This statement turns all the outlets on. Then press play on the recorder and type LIAD " program name ". Then press ENTER. Allow sufficient time for the program to load al predetermined in lab. Then prese RUN. Program beqins to execute and may ask for inputs as indicated by the printer. The program should contain statements to automatically save the programs and data.

After the run, reverse the operating procedures concerning power supply and disconnect analog input lines. The system may then be taken to the lab for data transfer to other computers by
The Personal Computing Association
presents
A gathering of user groups and computer stores
in the Washington D.C. Area

Greenbelt Hilton Admission: $\$ 2 /$ with this ad, $\$ 4 /$ general Adele H. Stamp Union, Rm. 3113. University of Maryland, College Park, MO 20742

－RJVアロ！7 כ！！and

2920－226：10E

－3 Jezndwos

$01 \angle 02$ OW •6anasuepela
$\frac{\sec x 08}{} 0^{\circ} 0^{\circ} d$
：s！वnoJg

CATS Newsletter
P．O．Box 725
Bladensburg MD 20710

The next meeting of C．A．T．S．will be on：
Saturday，October 12.
11：00 AM Hardware workshop，
2：00 PM General meeting．
New Carrolton Public Library 7414 Riverdale Road，New Carrolton，MD
IF YOU ARE NOT A MEMBER OF CATS．THIS IS THE ONLY ISSUE YOU WILL RECIEVE
Dues $=$ 事 15.08 per year，per family．

